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First convergent synthesis of (+)-myxothiazol A (1) was achieved based on modified (one-pot) Julia olef-
ination between (3,5R)-dimethoxy-(4R)-methyl 6-oxo-(2E)-hexenamide (2), corresponding to left-side of
the final molecule, and E-4-20-(1S,6-dimethylheptadiene)-(2,40-bis-thiazole)-4-methybenzothiazole
sulfone (4) corresponding to right-side.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Myxothiazol A (1) possessing a bithiazole skeleton as well as a
b-methoxyacrylate moiety was isolated from the myxobacterium
Myxococcus fulvus strain Mxf16.1 Myxothiazol A is active against
many filamentous fungi and completely inhibits growth of Mucor
hiemalis at a concentration of 2 lg/ml.1 The fungicidal activity of
the b-methoxyacrylate (MOA) inhibitors has been shown to be
due to their ability to inhibit mitochondrial respiration by blocking
electron transfer between cytochrome b and cytochrome c.2 The
structure of myxothiazol A (1) was established by a combination
of chemical degradation and NMR study, and its absolute configu-
ration at C(14)–carbon was determined by X-ray analysis of its
degradation product.3 The synthesis of a diasteromeric mixture
of 1 was achieved based on a Wittig coupling between racemic
aldehyde (±)-2 (left half) and chiral phosphonium salt (S)-3 (right
half)4 (Scheme 1). Chiral synthesis of 1 was not achieved so far,
and we now report the first synthesis of (+)-1 based on modified
(one-pot) Julia olefination between a chiral aldehyde (4R,5R)-2
and a chiral benzothiazole sulfone (S)-4.

2. Synthesis of left-half (4R,5R)-2

The synthesis of (±)-2 was achieved in overall 1% yield (9 steps)
based on a condensation reaction between cinnamaldehyde and
the dianion derived from methyl 3-oxopentanoate followed by
several synthetic steps.4 In this case, the preparation of chiral form
ll rights reserved.

.

of 2 was possible due to the optical resolution of the intermediate.
The preparation of (4R,5R)-2 was achieved by the following syn-
thetic route. By applying the previously reported procedure,5 the
reaction of (2R,3S)-epoxy butanoate 56and lithium silyl-acetylide
in the presence of Et2AlCl gave 6 {½a�24

D �7.57 (c 1.09, CHCl3)} in
72% yield. Methylation of 6 followed by consecutive desilylation
and reduction afforded 8 {½a�27

D �27.6 (c 1.05, CHCl3)} in 40% overall
yield.7 Silylation of 8 afforded the silyl ether 9 {93%, ½a�25

D �4.74 (c
1.06, CHCl3)}, which was treated with n-BuLi and methyl chloro-
formate to give an acetylenecarboxylate 10 (½a�24

D � 15.1 (c 0.86,
CHCl3)) in 88% yield. Conjugate addition of MeOH to acetylenecarb-
oxylate 10 in the presence of a catalytic amount of Bu3P afforded a
single isomer, (Z)-b-methoxy-a,b-unsaturated ester 11 {½a�25

D �15.6
(c 0.96, CHCl3)} in 89% yield. The (Z)-geometry of 11 was confirmed
by the NOE enhancement for the olefinic proton and the methine
proton (8.6%). Isomerization of (Z)-11 to (E)-12 was carried out
by the following procedure. When a solution of (Z)-11 in CDCl3

(chloroform-d + 1% v/v TMS (D, 99.8%) + SILVER FOIL) from Cam-
bridge Isotope Laboratories, Inc.) was allowed to react for 3 d at
room temperature, (E)-12 was exclusively obtained in 95% yield.
The overall yield of (E)-12 from (2R,3S)-5 was 20% (7 steps), and
was found to be improved in comparison to that of the desilylated
12 from methyl (2R,3S)-epoxy butanoate (11% overall yield, 8
steps).8 In addition, a solution of (Z)-11 in CHCl3 was treated with
a small amount of 4 M HCl in dioxane to give (E)-12 in 81% yield.
This experiment indicates proton (H+)-assisted isomerization of
(Z)-11 to the thermodynamically more stable (E)-12. Conversion
of ester group to amide was carried out by the following procedure.
Alkaline hydrolysis of the crude (E)-12 followed by acid treatment
gave carboxylic acid. Treatment of this acid with water-soluble
carbodiimide hydrochloric acid salt (WSCD�HCl) in the presence
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Scheme 2. Reagents and conditions: (a) trimethylsilylacetylene/n-BuLi/Et2AlCl/THF; (b) MeI/Ag2O/DMF; (c) (1) n-Bu4N+F�/THF, (2) LiBH4; (d) TBDMSCl/imidazole/DMF; (e) n-
BuLi/ClCOOMe; (f) Bu3P/MeOH; (g) CDCl3 or 4 M-HCl in dioxane/CHCl3; (h) (1) Ba(OH)2�8H2O/MeOH, 70 �C (2) 0.5 M HCl (3) WSCD�HCl/HOAt/Et3N/DMF; (4) 28% aqueous
NH3; (i) (1) HF–pyridine (2) TPAP/NMO/MS-4A/CH2Cl2.
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of 1-hydroxy-7-aza-benzotriazole (HOAt) followed by addition of
aqueous NH3 gave the desired amide 13 {½a�27

D +35.7 (c 0.84, CHCl3)}
in 39% overall yield from (E)-12. Desilylation of 13 with HF–pyr-
idine followed by oxidation with tetrapropylammonium perruthe-
nate (TPAP) in the presence of 4-methylmorpholine N-oxide
(NMO) and MS-4A afforded the desired aldehyde (4R,5R)-2 in
32% overall yield. 1H NMR data of the synthetic (4R,5R)-2 were
consistent with those of the reported (±)-24b (see Scheme 2).

3. Synthesis of right-half (S)-4 and Myxothiazol A (1)

We previously obtained the starting chiral alcohol (S)-14 based
on lipase-assisted asymmetric hydrolysis of racemic acetate of 14.9

Treatment of (S)-14 with 2-mercaptobenzothiazole (BTSH) in the
presence of Ph3P and diethylazodicarboxylate (DEAD) gave the cor-
responding sulfide (S)-15 {½a�26

D �92.97 (c 1.48, CHCl3)} in 95%
yield. LiBH4 reduction of (S)-15 followed by oxidation with 35%
H2O2 in the presence of hexaammonium heptamolybdate tetrahy-
trate {Mo7O24(NH4)6�4H2O} provided the corresponding sulfone-
alcohol, which was again treated with BTSH in the presence of
Ph3P and DEAD to afford the corresponding sulfide (S)-16 {½a�26

D

�74.4 (c 0.77, CHCl3)} in 66% overall yield. The reaction of (S)-16
and (2E)-4-methylpentenal in the presence of lithium bis(trimeth-
ylsilyl)amide (LHMDS) in THF gave a mixture (E/Z = 3.3/1) of cou-
pled products, which were separated to give (E)-17 {½a�27

D +7.83 (c
0.525, CHCl3)} (59%) and (Z)-18 {½a�27

D �82.3 (c 0.81, CHCl3)}
(18%). Oxidation of (E)-17 with 35% H2O2 in the presence of
Mo7O24(NH4)6�4H2O provided the desired (S)-4 {½a�25

D �3.6 (c 0.6,
CHCl3)} in 77% yield. The overall yield of (S)-4 from the reported
(S)-14 was 28% (4 steps). In contrast, the overall yield of (S)-3 from
the commercially available (2R)-3-hydroxy-2-methylpropanoate
was 1% (19 steps).4 Finally, modified (one-pot) Julia olefination be-
tween the chiral aldehyde (4R,5R)-2 and the chiral benzothiazole
sulfone (S)-4 in the presence of LHMDS afforded (+)-myxothiazol
A (1) {½a�26

D +33.5 (c 0.70, MeOH)} in 61% yield. The spectral data
of the synthetic 1 were identical with those of natural (+)-myx-
othiazol A (1) {½a�25

D +43.4 (c 6.0, MeOH)} 3a including the sign of
a specific rotation (see Scheme 3).
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4. Conclusion

The first convergent synthesis of (+)-myxothiazol A (1) was
achieved based on modified (one-pot) Julia olefination between
the chiral aldehyde (4R,5R)-2, corresponding to left-side of the final
molecule, and chiral benzothiazole sulfone (S)-4, bearing a bithiaz-
ole moiety corresponding to right-side, respectively. The desired
chiral aldehyde (4R,5R)-2 was obtained from the starting epoxy es-
ter (2R,3S)-5 in an overall 2.5% yield (9 steps). Moreover, the de-
sired chiral benzothiazole sulfone (S)-4 was obtained from (S)-4-
ethoxycarbonyl-20-(1-hydroxymethylethyl)-2,40-bithiazole (14) in
an overall yield of 28% (4 steps). Finally, modified (one-pot) Julia
olefination between (4R,5R)-2 and (S)-4 afforded (+)-myxothiazol
A (1) in 61% yield. The coupling yield was comparably better than
that of the reported Wittig procedure (22% yield).4b
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