Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/00404039)

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

First synthesis of (+)-myxothiazol A

Yuki Iwaki ^{a,b}, Masahiro Kaneko ^a, Hiroyuki Akita ^{a,}*

^a Faculty of Pharmaceutical Sciences, Toho University, 2-2-1, Miyama, Funabashi, Chiba 274-8510, Japan ^b Research Institute, Novartis Pharma K.K., 8 Ohkubo, Tsukuba, Ibaraki 300-2611, Japan

article info

ABSTRACT

Article history: Received 28 August 2008 Accepted 22 September 2008 Available online 25 September 2008

Keywords: Myxothiazol A Antibiotic Total synthesis Asymmetric synthesis Modified Julia olefination

1. Introduction

Myxothiazol A (1) possessing a bithiazole skeleton as well as a b-methoxyacrylate moiety was isolated from the myxobacterium Myxococcus fulvus strain Mxf[1](#page-2-0)6.¹ Myxothiazol A is active against many filamentous fungi and completely inhibits growth of Mucor hiemalis at a concentration of 2 μ g/ml.¹ The fungicidal activity of the β -methoxyacrylate (MOA) inhibitors has been shown to be due to their ability to inhibit mitochondrial respiration by blocking electron transfer between cytochrome b and cytochrome $c²$ $c²$ $c²$ The structure of myxothiazol A (1) was established by a combination of chemical degradation and NMR study, and its absolute configuration at C(14)–carbon was determined by X-ray analysis of its degradation product. 3 The synthesis of a diasteromeric mixture of 1 was achieved based on a Wittig coupling between racemic aldehyde (\pm) -2 (left half) and chiral phosphonium salt (S) -3 (right half) 4 ([Scheme 1](#page-1-0)). Chiral synthesis of 1 was not achieved so far, and we now report the first synthesis of $(+)$ -1 based on modified (one-pot) Julia olefination between a chiral aldehyde (4R,5R)-2 and a chiral benzothiazole sulfone (S) -4.

2. Synthesis of left-half (4R,5R)-2

The synthesis of (\pm) -2 was achieved in overall 1% yield (9 steps) based on a condensation reaction between cinnamaldehyde and the dianion derived from methyl 3-oxopentanoate followed by several synthetic steps. 4 In this case, the preparation of chiral form

E-mail address: akita@phar.toho-u.ac.jp (H. Akita).

First convergent synthesis of (+)-myxothiazol A (1) was achieved based on modified (one-pot) Julia olefination between (3,5R)-dimethoxy-(4R)-methyl 6-oxo-(2E)-hexenamide (2), corresponding to left-side of the final molecule, and $E-4-2'$ -(1S,6-dimethylheptadiene)-(2,4'-bis-thiazole)-4-methybenzothiazole sulfone (4) corresponding to right-side.

- 2008 Elsevier Ltd. All rights reserved.

of 2 was possible due to the optical resolution of the intermediate. The preparation of $(4R,5R)$ -2 was achieved by the following synthetic route. By applying the previously reported procedure, 5 the reaction of $(2R,3S)$ -epoxy butanoate $5⁶$ $5⁶$ $5⁶$ and lithium silyl-acetylide in the presence of Et₂AlCl gave **6** { $[\alpha]_D^{24}$ -7.57 (*c* 1.09, CHCl₃)} in 72% yield. Methylation of 6 followed by consecutive desilylation and reduction afforded **8** $\left[\alpha \right]_D^{27}$ -27.6 (c 1.05, CHCl₃)} in 40% overall yield.⁷ Silylation of **8** afforded the silyl ether **9** {93%, $[\alpha]_D^{25}$ -4[.7](#page-2-0)4 (*c*) 1.06, CHCl₃)}, which was treated with n -BuLi and methyl chloroformate to give an acetylenecarboxylate **10** ($\left[\alpha\right]_D^{24}$ – 15.1 (c 0.86, $CHCl₃$)) in 88% yield. Conjugate addition of MeOH to acetylenecarboxylate 10 in the presence of a catalytic amount of $Bu₃P$ afforded a single isomer, (Z)- β -methoxy- α , β -unsaturated ester **11** { $[\alpha]_D^{25}$ -15.6 $(c$ 0.96, CHCl₃)} in 89% yield. The (Z) -geometry of 11 was confirmed by the NOE enhancement for the olefinic proton and the methine proton (8.6%). Isomerization of (Z) -11 to (E) -12 was carried out by the following procedure. When a solution of (Z) -11 in CDCl₃ (chloroform- $d + 1\%$ v/v TMS (D, 99.8%) + SILVER FOIL) from Cambridge Isotope Laboratories, Inc.) was allowed to react for 3 d at room temperature, (E) -12 was exclusively obtained in 95% yield. The overall yield of (E) -12 from $(2R,3S)$ -5 was 20% (7 steps), and was found to be improved in comparison to that of the desilylated 12 from methyl (2R,3S)-epoxy butanoate (11% overall yield, 8 steps).⁸ In addition, a solution of (Z) -11 in CHCl₃ was treated with a small amount of 4 M HCl in dioxane to give (E) -12 in 81% yield. This experiment indicates proton (H⁺)-assisted isomerization of (Z) -11 to the thermodynamically more stable (E) -12. Conversion of ester group to amide was carried out by the following procedure. Alkaline hydrolysis of the crude (E) -12 followed by acid treatment gave carboxylic acid. Treatment of this acid with water-soluble carbodiimide hydrochloric acid salt (WSCD-HCl) in the presence

^{*} Corresponding author. Tel.: +81 474 72 1805.

^{0040-4039/\$ -} see front matter © 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.09.125

Scheme 1.

 ${\bf S}$ cheme 2. Reagents and conditions: (a) trimethylsilylacetylene/n-BuLi/Et2AlCl/THF; (b) MeI/Ag2O/DMF; (c) (1) n -Bu $_4$ N+F-/THF, (2) LiBH4; (d) TBDMSCl/imidazole/DMF; (e) n -BuLi/ClCOOMe; (f) Bu₃P/MeOH; (g) CDCl₃ or 4 M-HCl in dioxane/CHCl₃; (h) (1) Ba(OH)₂·8H₂O/MeOH, 70 °C (2) 0.5 M HCl (3) WSCD-HCl/HOAt/Et₃N/DMF; (4) 28% aqueous NH₃; (i) (1) HF-pyridine (2) TPAP/NMO/MS-4A/CH₂Cl₂.

of 1-hydroxy-7-aza-benzotriazole (HOAt) followed by addition of aqueous NH₃ gave the desired amide **13** $\{[\alpha]_{\mathrm{D}}^{27}$ +35.7 (c 0.84, CHCl₃)} in 39% overall yield from (E) -12. Desilylation of 13 with HF–pyridine followed by oxidation with tetrapropylammonium perruthenate (TPAP) in the presence of 4-methylmorpholine N-oxide (NMO) and MS-4A afforded the desired aldehyde (4R,5R)-2 in 32% overall yield. ¹H NMR data of the synthetic $(4R,5R)$ -2 were consistent with those of the reported (\pm) - 2^{4b} (see Scheme 2).

3. Synthesis of right-half (S)-4 and Myxothiazol A (1)

We previously obtained the starting chiral alcohol (S)-14 based on lipase-assisted asymmetric hydrolysis of racemic acetate of ${\bf 14}^{.9}$ ${\bf 14}^{.9}$ ${\bf 14}^{.9}$ Treatment of (S) -14 with 2-mercaptobenzothiazole (BTSH) in the presence of Ph₃P and diethylazodicarboxylate (DEAD) gave the corresponding sulfide (S)-**15** $\{[\alpha]_D^{26}$ –92.97 (c 1.48, CHCl₃)} in 95% yield. LiBH $_4$ reduction of (S)-**15** followed by oxidation with 35% $H₂O₂$ in the presence of hexaammonium heptamolybdate tetrahytrate ${Mo_7O_{24}(NH_4)_6\cdot 4H_2O}$ provided the corresponding sulfonealcohol, which was again treated with BTSH in the presence of Ph₃P and DEAD to afford the corresponding sulfide (S)-**16** $\{[\alpha]_D^{26}$ -74.4 (c 0.77, CHCl₃)} in 66% overall yield. The reaction of (S)-16 and (2E)-4-methylpentenal in the presence of lithium bis(trimethylsilyl)amide (LHMDS) in THF gave a mixture ($E/Z = 3.3/1$) of coupled products, which were separated to give (E) -17 $\{[\alpha]_D^{27}$ +7.83 (c 0.525, CHCl₃)} (59%) and (Z)-**18** $\{[\alpha]_D^{27}$ -82.3 (c 0.81, CHCl₃)} (18%). Oxidation of (E) -17 with 35% $H₂O₂$ in the presence of $Mo_7O_{24}(NH_4)_6.4H_2O$ provided the desired (S)-4 { $[\alpha]_D^{25}$ -3.6 (c 0.6, $CHCl₃$) in 77% yield. The overall yield of (S)-4 from the reported (S) -14 was 28% (4 steps). In contrast, the overall yield of (S) -3 from the commercially available (2R)-3-hydroxy-2-methylpropanoate was 1% (19 steps).^{[4](#page-2-0)} Finally, modified (one-pot) Julia olefination between the chiral aldehyde (4R,5R)-2 and the chiral benzothiazole sulfone (S)-4 in the presence of LHMDS afforded (+)-myxothiazol A (1) $\{[\alpha]_D^{26}$ +33.5 (c 0.70, MeOH)} in 61% yield. The spectral data of the synthetic 1 were identical with those of natural (+)-myxothiazol A (1) $\{[\alpha]_D^{25}$ +43.4 (c 6.0, MeOH)}^{3a} including the sign of a specific rotation (see [Scheme 3\)](#page-2-0).

Scheme 3. Reagents and conditions: (a) 2-mercaptobenzothiazol (BTSH)/DEAD/Ph₃P/THF; (b) (1) LiBH₄/THF (2) H₂O₂/Mo₇O₂₄(NH₄)₆.4H₂O/EtOH (3) BTSH/DEAD/Ph₃P/THF; (c) LHMDS/(2E)-4-methylpentenal/THF; (d) $H_2O_2/Mo_7O_{24}(NH_4)_6$ -4H₂O/EtOH; (e) LHMDS/THF.

4. Conclusion

The first convergent synthesis of $(+)$ -myxothiazol A (1) was achieved based on modified (one-pot) Julia olefination between the chiral aldehyde (4R,5R)-2, corresponding to left-side of the final molecule, and chiral benzothiazole sulfone (S) -4, bearing a bithiazole moiety corresponding to right-side, respectively. The desired chiral aldehyde (4R,5R)-2 was obtained from the starting epoxy ester (2R,3S)-5 in an overall 2.5% yield (9 steps). Moreover, the desired chiral benzothiazole sulfone (S) -4 was obtained from (S) -4ethoxycarbonyl-2'-(1-hydroxymethylethyl)-2,4'-bithiazole (**14**) in an overall yield of 28% (4 steps). Finally, modified (one-pot) Julia olefination between $(4R,5R)$ -2 and (S) -4 afforded $(+)$ -myxothiazol A (1) in 61% yield. The coupling yield was comparably better than that of the reported Wittig procedure (22%) yield).^{4b}

Acknowledgments

We would like to thank Dr Ryoichi Akaishi of Osaka Yuki Kagaku Kogyo Co., Ltd (Japan) for providing n-butyl (2R,3S)-epoxy butyrate (5).

References and notes

- 1. Gerth, K.; Irschik, H.; Reichenbach, H.; Trowitzsch, W. J. Antibiotics 1980, 33, 1474–1479.
- 2. Thierbach, G.; Reichenbach, H. Biochim. Biophys. Acta 1981, 638, 282-289.
3. (a) Trowitzsch. W.: Reifenstahl. G.: Wray. V.: Gerth. K. I. Antibiotics 198
- (a) Trowitzsch, W.; Reifenstahl, G.; Wray, V.; Gerth, K. J. Antibiotics 1980, 33, 1480–1490; (b) Trowitzsch, W.; Höfle, G.; Sheldrick, W. S. Tetrahedron Lett. 1981, 22, 3829–3832.
- 4. (a) Martin, B. J.; Clough, J. M.; Pattenden, G.; Waldron, I. R. Tetrahedron Lett. 1993, 34, 5151–5154; (b) Clough, J. M.; Dube, H.; Martin, B. J.; Pattenden Reddy, K. S. G.; Waldron, I. R. Org. Biomol. Chem. 2006, 4, 2906–2911.
- 5. Akita, H.; Matsukura, H.; Oishi, T. Tetrahedron Lett. 1986, 27, 5397–5400.
- 6. Chemenzymatic synthesis of methyl (2R,3S)-epoxy butanoate was reported: (a) Akita, H.; Kawaguchi, T.; Enoki, Y.; Oishi, T. Chem. Pharm. Bull. 1990, 38, 323– 328; (b) Kato, K.; Ono, M.; Akita, H. Tetrahedron 2001, 57, 10055–10062. Now, nbutyl (2R,3S)-epoxy butyrate (5) is commercially available from Osaka Yuki Kagaku Kogyo Co., Ltd (Japan). Japan Kokai Tokkyo Koho JP 3095539.
- 7. Satisfactory analytical data were obtained for all new compounds.
- 8. Kato, K.; Nishimura, A.; Yamamoto, Y.; Akita, H. Tetrahedron 2003, 43, 643–645.
- (a) Akita, H.; Nozawa, M.; Nagumo, S. Chem. Pharm. Bull. 1994, 42, 1208-1212; (b) Akita, H.; Iwaki, Y.; Kato, K.; Qi, J.; Ojika, M. Tetrahedron: Asymmetry 2007, 18, 513–519. Now, both (S) -14 and (R) -14 were obtained by optical resolution of (\pm)-14 using HPLC separation {Chiralcel OD-H (2×25 cm), eluent; 20% 2propanol in hexane, 10 mL/min, (S)-14; t_R = 30 min, (R)-14; t_R = 50 min).